Home Lectures HomeworkCanvas

Lectures

slides colab html markdown notebook
Lecture 1: Basic concepts .html link .html .md .ipynb
Lecture 2: Convolutional neural networks .html link .html .md .ipynb
Lecture 3: Training neural networks (better) .html link .html .md .ipynb
Lecture 4: ะกV tasks .html link .html .md .ipynb
Lecture 5: Modelling sequences .html link .html .md .ipynb
Lecture 6: Vision Transformers .html link .html .md .ipynb
Lecture 7: Graph Neural Networks .html link .html .md .ipynb
Lecture 8: General tricks for efficient training .html link .html .md .ipynb
Lecture 9: Training large models .html link .html .md .ipynb
Lecture 10: Contrastive learning / self-supervised learning .html link .html .md .ipynb
Lecture 11: One-shot/Zero-shot/Few-shot learning .html link .html .md .ipynb
Lecture 12: Adversarial attacks and training .html link .html .md .ipynb
Lecture 13: Generative models I .html link .html .md .ipynb
Lecture 14: Generative models II (Generative adversarial models) .html link .html .md .ipynb
Lecture 15: Generative models III (Score-based and diffusion models) .html link .html .md .ipynb
Lecture 16: ICLR conference 2013 highlights .html link .html .md .ipynb

Additional/Practice sessions

colab html markdown notebook
PyTorch Introduction link .html .md .ipynb
Experiment tracking (logging) in PyTorch. link .html .md .ipynb
Regularization tricks for NN link .html .md .ipynb
Object detection link .html .md .ipynb
Semantic Segmentation (solutions) link .html .md .ipynb
Semantic Segmentation link .html .md .ipynb
Graph Neural Networks (GNN) and how to use them link .html .md .ipynb
ViT from scratch link .html .md .ipynb
Tricks to train big models link .html .md .ipynb
define laten variable dimensionality link .html .md .ipynb
def run(): link .html .md .ipynb