| Lecture 1: Basic concepts | .html | link | .html | .md | .ipynb |
| Lecture 2: Convolutional neural networks | .html | link | .html | .md | .ipynb |
| Lecture 3: Training neural networks (better) | .html | link | .html | .md | .ipynb |
| Lecture 4: ะกV tasks | .html | link | .html | .md | .ipynb |
| Lecture 5: Modelling sequences | .html | link | .html | .md | .ipynb |
| Lecture 6: Vision Transformers | .html | link | .html | .md | .ipynb |
| Lecture 7: Graph Neural Networks | .html | link | .html | .md | .ipynb |
| Lecture 8: General tricks for efficient training | .html | link | .html | .md | .ipynb |
| Lecture 9: Training large models | .html | link | .html | .md | .ipynb |
| Lecture 10: Contrastive learning / self-supervised learning | .html | link | .html | .md | .ipynb |
| Lecture 11: One-shot/Zero-shot/Few-shot learning | .html | link | .html | .md | .ipynb |
| Lecture 12: Adversarial attacks and training | .html | link | .html | .md | .ipynb |
| Lecture 13: Generative models I | .html | link | .html | .md | .ipynb |
| Lecture 14: Generative models II (Generative adversarial models) | .html | link | .html | .md | .ipynb |
| Lecture 15: Generative models III (Score-based and diffusion models) | .html | link | .html | .md | .ipynb |
| Lecture 16: ICLR conference 2013 highlights | .html | link | .html | .md | .ipynb |